


# 기술소개자료

세포 투과도가 향상된 리포좀 및 이를 포함하는 약물 전달체

┃ 나건 교수(가톨릭대학교 성심교정 바이오메디컬화학공학과)



#### 기술 정보

| 기술명   | 세포 투과도가 향상된 리포좀 및 이를 포함하는 약물 전달체 |       |                 |  |  |
|-------|----------------------------------|-------|-----------------|--|--|
| 등록번호  | 10-2313948                       | 출원번호  | 10-2020-0008642 |  |  |
| (등록일) | (2021.10.12)                     | (출원일) | (2020.01.22)    |  |  |

#### 연구자 소개

| 성명 | 나건                         | 직위    | 교수                          |
|----|----------------------------|-------|-----------------------------|
| 소속 | 가톨릭대학교 성심교정<br>바이오메디컬화학공학과 | 연구 분야 | 생체재료, 약물전달시스템<br>광역학치료, 암치료 |

#### 기술 개요

#### 기술 개요

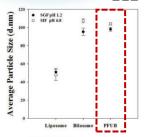
- 본 발명은 **항암제 약물의 세포 투과율 및 혈장 내 안정성을 증진시킬 수 있는** 리포좀 및 **이를 이용한 약물 전달체**에 관한 것임
- 벤다무스틴은 만성 림프성 백혈병, 비호지킨 림프종, 다발 골수종, 유방암을 치료하기 위한 항암제로서 효능이 우수하고, 부작용이 적으며, 단일요법 및 복합요법에 적합한 것으로 알려져 있음
- 다만, 벤타무스틴은 p-당단백질(p-glycoprotein)의 기질로서 세포 투과 시유출(efflux)에 의해 배출될 수 있고, 혈장 내 화학적 안정성에 한계가 있어 다량 투여 또는 반복적인 투여가 필요한 단점이 있음
- 한편, 리포좀은 사용하는 지질에 따라 구조나 크기를 조절할 수 있는 약물 전달체로, 양친매성이면서 독성이 거의 없고 체내에서 대사되어 배출된다는 특징을 가지고 있음
- 본 발명은 항암제인 벤다무스틴의 적절한 약효를 발휘하기 위해 p-당단백질에 의한 유출을 억제할 수 있고, 세포 투과율 및 혈장 내 안정성을 높일 수 있는 리포좀 제형화에 관한 것임

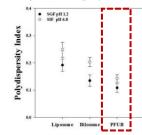
### 기술 개발 단계

| 응용 분야 | 약물 전달체(DDS)                                         |  |  |  |
|-------|-----------------------------------------------------|--|--|--|
| 개발 단계 | 기초이론<br>/실험 /성능평가 시작품제작<br>/성능평가 시작품제작<br>/성능평가 보준화 |  |  |  |
| 효과    | 세포 투과도 향상, 세포독성 없음, 위장관 및 혈중 환경에서 방출 제어 가능          |  |  |  |



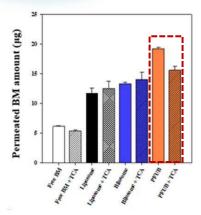
#### 기술의 특장점


## 향상된 세포 투과율 및 혈장 내 안정성을 통해, 암 치료용 약물전달체로 활용 가능


#### 본 발명 리포좀

- 지질층 막에 의해 격리된 내부 공간을 갖는 리포좀으로서, 지질층은 스테롤계 화합물, 폴록사머(poloxamer) 및 담즙산을 포함하는 것을 특징으로 함
- 평균 100nm 이하 균일한 입경을 가지며, 제타 전위가 양의 값을 가지는 바, 세포 투과도 향상되며, 제형 자체만으로 세포독성을 가지지 않아 안전함
- 위장관 및 혈중 환경에서 방출을 제어할 수 있는 바, **약물전달체로 활용**될 수 있음

#### 안정성 확인


- \* 대조군: Liposome(벤타무스틴 봉입 리포좀); Bilosome(벤타무스틴 봉입, 담즙산 첨가 리포좀)
- \* 실험군: PFUB(벤타무스틴 봉입, 폴록사머-답즙산 결합체 첨가 리포좀)





- ▶ 모사 위액(SGF) 및 모사 장액(SIF)에서의 크기 및 PDI 측정
- → 유의미한 변화 없음
- → 약물을 안정하게 봉입하고 제형 안정성을 유지할 수 있음 확인

#### 세포 투과성 확인



#### ▶ 세포 투과된 벤다무스틴 양 측정 결과

- → free BM 의 경우, 약 6 μg이 투과되었으며, 리포좀, 바일로좀, PFUB의 경우, 각각 1.91배, 2.18배, 3.13배 투과량이 증가함을 확인
- → PFUB의 경우 TCA가 존재함에 따라 free BM 대비 2.5배 향상
- → PFUB의 세포 투과에는 pluronic에 결합된

  UDCA에 의한 ABST 매개 트랜스사이토시스에
  의해 단순 리포좀 제형화보다 세포 투과도가 향상

#### 기술 응용분야

#### 응용분야

• 암 치료용 약물전달체











#### 시장 현황

#### 약물전달체 시장





〈글로벌 약물전달체 시장 규모 및 전망〉

〈국내 약물전달체 시장 규모 및 전망〉

- 전 세계 약물전달체 시장은 2020년 5,314억 달러에서 연평균 성장률 3.5%로 성장하여 2025년에는 6,319억 달러에 이를 것으로 예상됨
- **국내 약물전달체 시장**은 2020년 4조 2,480억 원에서 **연평균 성장률 1.5%로 성장**하여 2025년에는 4조 5,690억 원에 이를 것으로 예상됨
- 약물전달시스템 기술을 이용한 환자의 상태에 따라 필요한 양을 필요한
   시기에, 필요한 곳에 투여하는 맞춤형 투약시대가 도래할 것으로 전망
- 약물전달시스템 산업은 고령화 추세에 따라 의료 소비가 급증하고 의료기술 발달이 점차 약물 치료 중심으로 재편되고 있어 지속 성장 중임

추가 기술 정보

| 거래유형       | 기술매매, 라이선스, 기술협력,<br>기술지도 |        |  |
|------------|---------------------------|--------|--|
| 기술이전시 지원사항 | 노하우 전수 등                  | 명세서 정보 |  |

#### Contact point

### 가톨릭대학교 산학협력단

윤태진 차장/ Tel: 02-2164-4738/ E-mail: taejin@catholic.ac.kr 김아람 사원/ Tel: 02-2164-6504/ E-mail hold0919@catholic.ac.kr

